Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561467

RESUMO

The intricate involvement of the serotonin 5-HT2A receptor (5-HT2AR) both in schizophrenia and in the activity of antipsychotic drugs is widely acknowledged. The currently marketed antipsychotic drugs, although effective in managing the symptoms of schizophrenia to a certain extent, are not without their repertoire of serious side effects. There is a need for better therapeutics to treat schizophrenia for which understanding the mechanism of action of the current antipsychotic drugs is imperative. With bioluminescence resonance energy transfer (BRET) assays, we trace the signaling signature of six antipsychotic drugs belonging to three generations at the 5-HT2AR for the entire spectrum of signaling pathways activated by serotonin (5-HT). The antipsychotic drugs display previously unidentified pathway preference at the level of the individual Gα subunits and ß-arrestins. In particular, risperidone, clozapine, olanzapine and haloperidol showed G protein-selective inverse agonist activity. In addition, G protein-selective partial agonism was found for aripiprazole and cariprazine. Pathway-specific apparent dissociation constants determined from functional analyses revealed distinct coupling-modulating capacities of the tested antipsychotics at the different 5-HT-activated pathways. Computational analyses of the pharmacological and structural fingerprints support a mechanistically based clustering that recapitulate the clinical classification (typical/first generation, atypical/second generation, third generation) of the antipsychotic drugs. The study provides a new framework to functionally classify antipsychotics that should represent a useful tool for the identification of better and safer neuropsychiatric drugs and allows formulating hypotheses on the links between specific signaling cascades and in the clinical outcomes of the existing drugs.

2.
Methods Mol Biol ; 2687: 15-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464159

RESUMO

Bioluminescence resonance energy transfer (BRET) is a non-radiative energy transfer between a bioluminescent donor and a fluorescent acceptor with far-reaching applications in detecting physiologically relevant protein-protein interactions. The recently developed enhanced bystander BRET (ebBRET) biosensors have made it possible to rapidly determine the signaling profile of a series of ligands across a large number of GPCRs and their signaling repertoires, which has tremendous implications in the drug discovery process. Here we describe BRET and the ebBRET biosensors as investigational tools in establishing functional selectivity downstream of GPCRs.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais , Humanos , Transferência de Energia , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células HEK293
3.
Cell Chem Biol ; 27(10): 1308-1317.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726588

RESUMO

G protein-coupled receptors (GPCRs) are critical mediators of cell signaling. Although capable of activating G proteins in a monomeric form, numerous studies reveal a possible association of class A GPCRs into dimers/oligomers. The relative location of individual protomers within these GPCR complexes remains a topic of intense debate. We previously reported that class A serotonin 5-HT2A receptor (5-HT2AR) and class C metabotropic glutamate 2 receptor (mGluR2) are able to form a GPCR heterocomplex. By introducing the photoactivatable unnatural amino acid p-azido-L-phenylalanine (azF) at selected individual positions along the transmembrane (TM) segments of mGluR2, we delineate the residues that physically interact at the heteromeric interface of the 5-HT2AR-mGluR2 complex. We show that 5-HT2AR crosslinked with azF incorporated at the intracellular end of mGluR2's TM4, while no crosslinking was observed at other positions along TM1 and TM4. Together, these findings provide important insights into the structural arrangement of the 5-HT2AR-mGluR2 complex.


Assuntos
Aminoácidos/química , Azidas/química , Fenilalanina/análogos & derivados , Receptor 5-HT2A de Serotonina/química , Receptores de Glutamato Metabotrópico/química , Células HEK293 , Humanos , Modelos Moleculares , Fenilalanina/química
4.
ACS Chem Neurosci ; 10(5): 2318-2331, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30609893

RESUMO

Pharmacophore models for 5-HT2A receptor antagonists consist of two aromatic/hydrophobic regions at a given distance from a basic amine. We have previously shown that both aromatic/hydrophobic moieties are unnecessary for binding or antagonist action. Here, we deconstructed the 5-HT2A receptor antagonist/serotonin-dopamine antipsychotic agent risperidone into smaller structural segments that were tested for 5-HT2A receptor affinity and function. We show, again, that the entire risperidone structure is unnecessary for retention of affinity or antagonist action. Replacement of the 6-fluoro-3-(4-piperidinyl)-1,2-benz[ d]isoxazole moiety by isosteric tryptamines resulted in retention of affinity and antagonist action. Additionally, 3-(4-piperidinyl)-1,2-benz[ d]isoxazole (10), which represents less than half the structural features of risperidone, retains both affinity and antagonist actions. 5-HT2A receptor homology modeling/docking studies suggest that 10 binds in a manner similar to risperidone and that there is a large cavity to accept various N4-substituted analogues of 10 such as risperidone and related agents. Alterations of this "extended" moiety improve receptor binding and functional potency. We propose a new risperidone-based pharmacophore for 5-HT2A receptor antagonist action.


Assuntos
Antipsicóticos/química , Receptor 5-HT2A de Serotonina/química , Risperidona/química , Antipsicóticos/metabolismo , Células HEK293 , Humanos , Ketanserina/metabolismo , Modelos Químicos , Receptor 5-HT2A de Serotonina/metabolismo , Risperidona/metabolismo , Triptaminas/metabolismo
5.
Nat Neurosci ; 20(9): 1247-1259, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783139

RESUMO

Antipsychotic drugs remain the standard for schizophrenia treatment. Despite their effectiveness in treating hallucinations and delusions, prolonged exposure to antipsychotic medications leads to cognitive deficits in both schizophrenia patients and animal models. The molecular mechanisms underlying these negative effects on cognition remain to be elucidated. Here we demonstrate that chronic antipsychotic drug exposure increases nuclear translocation of NF-κB in both mouse and human frontal cortex, a trafficking event triggered via 5-HT2A-receptor-dependent downregulation of the NF-κB repressor IκBα. This upregulation of NF-κB activity led to its increased binding at the Hdac2 promoter, thereby augmenting Hdac2 transcription. Deletion of HDAC2 in forebrain pyramidal neurons prevented the negative effects of antipsychotic treatment on synaptic remodeling and cognition. Conversely, virally mediated activation of NF-κB signaling decreased cortical synaptic plasticity via HDAC2. Together, these observations may aid in developing therapeutic strategies to improve the outcome of schizophrenia treatment.


Assuntos
Antipsicóticos/efeitos adversos , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Histona Desacetilase 2/metabolismo , NF-kappa B/metabolismo , Sinapses/metabolismo , Animais , Antipsicóticos/toxicidade , Transtornos Cognitivos/genética , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Células HEK293 , Histona Desacetilase 2/deficiência , Histona Desacetilase 2/genética , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/genética , Sinapses/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia
6.
Curr Opin Pharmacol ; 32: 23-31, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27835800

RESUMO

G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.


Assuntos
Desenho de Fármacos , Terapia de Alvo Molecular , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Ligantes , Multimerização Proteica , Transporte Proteico
7.
ACS Chem Neurosci ; 7(9): 1292-9, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27385190

RESUMO

Several pharmacophore models have been proposed for 5-HT2A serotonin receptor antagonists. These typically consist of two aromatic/hydrophobic moieties separated by a given distance from each other, and from a basic amine. Although specified distances might vary, the models are relatively similar in their general construction. Because our preliminary data indicated that two aromatic (hydrophobic) moieties might not be required for such action, we deconstructed the serotonin-dopamine antipsychotic agent risperidone (1) into four smaller structural fragments that were thoroughly examined in 5-HT2A receptor binding and functional (i.e., two-electrode voltage clamp (TEVC) and intracellular calcium release) assays. It was apparent that truncated risperidone analogues behaved as antagonists. In particular, 6-fluoro-3-(1-methylpiperidin-4-yl)benzisoxazole (4) displayed high affinity for 5-HT2A receptors (Ki of ca. 12 nM) relative to risperidone (Ki of ca. 5 nM) and behaved as a potent 5-HT2A serotonin receptor antagonist. These results suggest that multiple aromatic (hydrophobic) moieties are not essential for high-affinity 5-HT2A receptor binding and antagonist activity and that current pharmacophore models for such agents are very much in need of revision.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Bário/farmacologia , Cálcio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Ketanserina/farmacocinética , Ketanserina/farmacologia , Potenciais da Membrana/genética , Mutação/genética , Oócitos , Ligação Proteica/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Risperidona/farmacologia , Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas da Serotonina/farmacocinética , Antagonistas da Serotonina/farmacologia , Trítio/farmacocinética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...